
r
~
~
~
~

VOL. 7 NO. 2 FEBRUARY 1994

Why We Need Object- 26 CHARLES F. BOWMAN

Slow to success, 00 database could catch fire

Oriented Systems as software systems reach greater complexity.

24 Ways to Improve 32 PEGGY VIEHMAN

DB2 database performance keeping you up al

Database Performance night? Here's what you can do lo improve it.

Can't Lose What 42 DAVID MCGOVERAN

You Never Had
"Not/ring From Nothing" continues with tire

myriad multivalued logic solutions for 11111/s.

Data Mining: Tapping 50 LISA LEWINSON

Buried in historical data is critical information;

the IVlother Lode 11 new wave of tools is trying to unearth ii.

f . DEPARTMENTS

EDITOR'S BUFFER 7 Taler De database? Ya; DB2, 00, and more.

ACCESS PATH 11 Readers respond to recent DBPD articles.

' DATABASE DESIGN 13 Wiren questions create more questions ... 4, ~

ACCORDING TO DATE 19 Answers to C. f. Date's recent puzzlers.

CLIENT /SERVER FORUM 23 DBMS integrity: Therein lies tire rub.

DESKTOP DATABASE 58 Reviewing 1993's PC database developments.

ENTERPRISE VIEW 60 How Access and Paradox fnre for modt!ling.

SQL UPDATE 87 SQL Access Group and the CU wars.

PRODUCT WATCH 70 Never a lull in the database market.

DATABASE PROGRAMMING & DESIGN (ISSN 0895-4518) "'puolished monthly. e.tCepl 1n Octooet. wl>cll is semi-monlllly and con1ail'$ the DATABASE PROGRAWM NG & DESIGN Buy·
er's Guide. by M lier Freeman Inc .. 600 Harrison SI.. San Francisco. CA 94107. l 415) 905-2200. P~ase d11ec1 advertising and ed11orial inc:JuorieS 10 INS address. Fot suoscnpllOn inoames. can
t800) 289-0169 {oulside u.s. (303) 447·9330) . SUBSCRIPTION RATE for the US os 547 for 13 isSU41S. Canadian/Mexican orders must be prepa<J In U.S. l\Jnds with add~.onal postage at
S6 per yeor. Cenad••n GST Permil " 124513 185. All olher coun1nes ou1s;da the U.S mu!.! 08 prepaid in U.S. lunds with addilional poslSjja al S 15 per year for surface mail or S40 ~ year for Bit
ma~. POSTMASTER: Send eddross changes 10 DATABASE PROGRAMMING & DESIGN. P.O. Box 53481. Boulder. CO 80322-3481 . For quickest SeMCe. call IOl~free (800) 2'89~0 169 (0>
ColoradO or ou1side the U.S. (303) 447·9330). Please allow six weeks for change o f address 10 take effect. SECOND CLASS POSTAGE paid at San Francisco. CA 94 107 and a1 add11iona1
mafog offlc ... DATABASE PROGRAMMING & DESIGN is • regisle<ed lraoemark owned by lhe paren1 company. Miller Freeman Inc. Afl material puO~shed In DATABASE PROGRAMMING &
DESIGN 11 copyoghled • 199• by Miit< Freeman Inc. All roghls tHe<ved. Rep<oduction of material appearing •n DATABASE PROGRAMMING & DESIGN is lorb1d'1en without perm sson. 16mm
mcroflm. 35mm microfilm. IOSmm microfict-e ""d article llf\d 1""8 photocopes are ••••table from university Mcrof~ms lnternalional 300 N. Zeeb Rd .. Ann ArbOI. IAf 48106 (313) 761·•700.

DATABASE PROGRAMMING & DESIGN
s

I I I I I I I I I I I I I I I I I

BY DAVID MCGOVERAN

Null support in RDBMS applications in1plies multivalued logic support
with all its attendant problems. What are designers really looking for?

Nothing from Nothing

P ROFESSIONAL DBMS
users play a variety

of roles: database administrator,
database designer, application de
veloper, and end user. When us
ing a DBMS, I doubt any consider
whether or not the DBMS supports
a many-valued logic. (Indeed, if
the products themselves are any
evidence, I doubt DBMS makers
examine this issue either.) Profes
sional DBMS users often question
whether the DBMS and database
design suppbrt nulls, however.
For most users, "SQL nulls" have
become a catchall means of ad
dressing a variety of problems.
Even end users, who used to be in
terested in application support of
"don't know" or " not applicable"

Part Ill:
I

responses during data entry, now
treat this issue as a question of
null support.

But why exactly are profes
sional users requiring "null sup
port" even if-though they may
not realize it-this requirement
implies that they want support for
many-valued logics? Last month
in Part II, we considered why
many-valued logics were inappro
priate as a DBMS's foundation. In
Part III this month, we will exam
ine the key reasons database de
signers and users find themselves
wanting the support of a many
valued logic vis-a-vis null support.

For this analysis to make any
sense, it is important to review our
understanding of a database's se-

FEBRUARY 1994
42

mantics. First, a database d esign
implements a model or represent
ation of some portion of the world
of experience called the " universe
of discourse." It defines the per
missible facts that can be repre
sented, of which only some are
made "active" by storing data in
rows in relational tables. For these
permissible facts 11ot represented by
rows in the database, the closed
world assumption permits us to say
that they are " false."

Careful consideration of your
own database application will dem
onstrate that the existence or ab
sence of a row in the database re
presents a statement about your
knowledge of the application do
main. Specifically, a row R in a ta-

ble representing a predicate P(x)
means that "we know that P(RJ is
true," while its absence means "we
know that P(R) is false." Under the
closed-world assumption, an im
permissible set of column values
(that is, those values not within
the defined universe of discourse)
cannot be used to form a predicate:
the result would not be a well
formed formula.

Given this understanding of
database semantics, it is my posi
tion that every appearance of a
null in a database represents some
form of conditioned knowledge. By
conditioned knowledge, I mean
that a precise expression of knowl
edge (such as the choice of a par
ticular value in the place of a null)

I I l I I I I I I I I I I I I I I

is determined by some condition
that cannot be satisfied. For ex
ample, when we permit a data en
try field to be "not applicable," the
mere appearance of this field on
the screen could be conditioned
on whether or not a value is appli
cable; that is, some condition must
exist that, if satisfied, would deter
mine whether the data entry oper
ator would be asked for a field
value.

We have long known that
some facts about the world are con
d itional, in the sense that "some,
but not all, instances of x have
property P." We understand condi
tional relationships, such as "most
instances of x have relationship
R(x, y) to y for some instances of

DATABASE PROGRAMMING & DESIGN
43

y." Indeed, it was such consider
ations that led to the introduction
of the so-called necessity and pos
sibility quantifiers, thus creating
modal logic. In the remainder of
this article, we will examine var
ious kinds of conditioned knowl
edge ·that lead to the appearance of
nulls in the database.

I will first examine the types
of conditioned knowledge that en
courage database designers to speci-
fy columns as permitting nulls,
including:

D Conditional relationships
D Conditional properties
D Conditional operations
D Conditional constraints. ~
I will then examine the var- ~

ious types of nulls that data entry S

operators might invoke (called "con
ditional information" here), and
relate these nulls to the kinds of
conditionality handled by data
base designers. In the absence of
maliciousness, carelessness, or ig
norance (as due to, for example,
lack of training), these situations,
inclusively, account for the ap
pearance of nulls in a database
and, therefore, for the perceived
need for many-valued logics.

CONDITIONAL RELATIONSHIPS
We can characterize a relationship
among types of entities in many
ways. The number of entities in
volved in the relationship is called
its degree. When the relationship is
not computed by a function or trans
formation, it is usually specified as
a simple mapping among entities
of the types. Mappings are often
characterized by the ratio of the
numbers (the card inalities) of each
entity participating in the relation
ship. For example, a mapping of
degree two is often characterized
via the notation n:m, which means
that n entities of one type have the
designated relationship to m enti
ties of a second type. Note that the
notion of a n:O, O:m, or 0:0 relation
ship conveys no positive informa
tion since it says that the relation
holds for no entities of one of the
types.

Perhaps the mapping most
familiar to relational database de
signers is the "parent-child" type
of relationship or, more precisely,
the l:m (one to one-or-more [or
many]) relationship. For each in
stance of the "parent" entity, zero
or more instances of the child enti
ty exist. Such a relationship is gen
erally modeled via a foreign key
in each row of the child relatio:-t
having the value of the primary
key of the corresponding row in
the parent relation. By coincidence,
this technique also works for the
1:0/ m (one to zero-or-more) rela
tionship (the 1:1 and 1:0/ 1 rela
tionships are special cases of the
1:0 Im relationship). Of course, it is
a little strange to think of a "par
ent" who has'no "children": How
can something be a parent by vir
tue of a relationship to nonexis
tent children?

Suppose that not every child
instance has a corresponding par
ent, which is the 0/1:0/m (mean-

I I I I I I l I I I I I I l I I I

Nulls represent
some form of

conditioned
knowledge

ing zero-or-one to zero-or-more)
relationship. We will refer to such
relationships as "conditional" be
cause it represents a situation in
which not all instances of any one
of the involved entities are related
to some instance of the other enti
ty. For example, consider . the case
of real children generally. Not all
children have identifiable parents:
it is an unfortunate fact that the
parents of some children are for
ever unknown due to the inhu
manities of wars, kidnappings, or
other causes. Similarly, it is not
uncommon to find a conditional
relationship modeled using the for
eign key approach, with the spe
cial case of zero references (as in
the child that has no parent) being
modeled by entering a null in place
of a foreign key value.

CONDITIONAL PROPERTIES
In logic, an entity type (or class) is
said to have defining properties and
meaning criteria.1 A candidate in
stance must satisfy all the defining
properties to be of the entity type.
By contrast, the candidate might
satisfy only some of the meaning
criteria: Any individual meaning
criterion counts only as evidence
that the candidate is of the entity
type. However, the exhaustive dis
junction of all meaning criteria is a
defining property.

For example, one defining
property of the insect entity type
is that it must have six legs. How
ever, having wings is a meaning
criterion: Some insects have wings
and others do not. As another ex-

FEBRUARY 1994
44

ample, the definition of a poem
abounds with meaning criteria:
some poems have meter, others
rhyme, still others may use meta
phor, and so on. Conditional prop
erties are often modeled by per
mitting nulls in the columns
representing the meaning criteria.
Thus, a table containing descrip
tions of insects might have a col
umn characterizing wing types that
would be set to null if the particu
lar insect did not have wings.
Similarly, a table about poems
might have a column to specify
the poem's meter that would be set
to null if the poem had no meter.
By extension, a compound foreign
key may be entered as partially
null when a part of the referenced
primary key is, in fact, a meaning
criteria.

CONDITIONAL OPERATIONS
Various operations supported in
relational DBMS products operate
on multiple types of operands. For
example, whereas the join operates
on two relations that are related in
a particular manner, the outer join
operates on two conditionally re
lated relations. Similarly, the outer
union operates on two relations
that only conditionally satisfy the
union compatibility relationship.
In a sense, then, the operands of
these operators are conditionally
defined. I will refer to such opera
tions as conditional operations.

Because the relationship among
operands is not uniform for all in
stances of the operands, the result
of a conditional operator is not a
uniquely defined relation. Specifi
cally, the result of an outer join or
outer ·union does not, in general,
have a unique relation predicate.
Instead, it is a collection of possi
ble relations: one relation for rows
without nulls, plus one for each
extant combination of columns con
taining nulls.

Suppose we had an employ
ees table EMP and a managers ta
ble MGR with primary keys E_IO
and M_IO, respectively, both from
the same domain. An outer (equi-)
join of these tables on E_ID and
M_I> and returning [_ID and M_ID
would typically return at least two
tables: one having the relation
predicate "employee E_D with prop
erties P(E_ ID) managed by manager
M_ IO" and one with the simpler re-

lation predicate "employee [_ID
with properties P(E_ll)." Since this
situation cannot be directly mod
eled in the relational algebra, the
various result relations are made
uniform by creating extra columns
containing nulls. These nulls are
of the type "value is the empty
set."

CONDITIONAL CONSTRAINTS
For some constraints, the time at
which they must be satisfied can
not be stated in advance; they are
neither a t statemen t completion
time (immediate) or commit time
(deferred). As such, they are nei
ther state nor transition con
straints. For example, an investor
"selling short" implies a commit
ment to buy the sold stock at some
future, unspecified time. As such,
selling short involves a condition
al integrity constraint (balancing
the amount of stock "sold short"
with the amount purchased) that
is satisfied at a time dependent on
any event or other cond ition.

Because conditional constraints
imply the existence of entity in
stances that would satisfy the re
quired constraint, these instances
are sometimes modeled by includ
ing special entries in the database
in advance of the time at which
the constraint is satisfied in reali
ty. This approach creates entity in
stances for which the values of cer
tain properties cannot be known.
The missing information is often
modeled with nulls, to be replaced
at some later time with values. In
the interim, th e conditional con
straint is satisfied by programming
it to accept either real values or
nulls.

For example, a stock trade
might be modeled by a transaction
that inserts into a STOO<-SALES table
a row containing the stock identi
fier, its sell price, date, and recipi
ent, and into a STOCK_ BUYS table the
stock identifier, buy price, date, and
seller. Selling short would then
insert the appropriate sell infor
mation, but would insert a row for
the stock ide~tifier in the STOCK_
BUYS table, setting the buy price,
date, and seller columns to null
until some la ter time. The con
straint would be written to accept
the existence of such a row, effec
tively deferring the real constraint
check indefinitely.

I I I I l I I I I I I I I I I I I

What are users
trying to convey
when they use

nulls?
CAPTURING NOTHING:
CONDITIONAL INFORMATION
Having considered the various
data modeling issues that contrib
ute to nulls, we are left with situa
tions in which the database de
signer must anticipate incomplete
data entry. What are end users try
ing to convey when they enter a
null in to a field during data entry?
C. J. Date has listed the more com
mon possible meanings that may
be attributed to a null.2 Say we had
a DBMS capable of distinguishing
all these flavo rs of null. Let's <!x
amine the use of each in turn.

Value not applicable. For ex
ample, a data entry form may con
tain fields for an employee's name
and spouse's name. If the employ
ee has no spouse, the user may en
ter "NI A" for "not applicable" or
may simply skip the field, leaving
it empty. The program, in turn,
may enter the spouse's name into
the database as a null. However,
some thought shows that no entry
into the database should have been
made unless an integrity constraint
requires employees to have spouses.
In that case, the spouse's name
would be required; failure to enter
a value from the domain of possi
ble spousal names would be a con
straint violation. The "value not
appl icable" is the data entry opera
tor's way of handling either a con
ditional relationship or a condi
t ional property.

Value unknown (temporarily).
Say the same data entry form is
used, but this time the user simply
does not know the name of the

FEBRUARY 1994
46

spouse. The employee has a spouse,
but the name has not been obtained.
In other words, the field is "appli
cable, but value temporarily un
known." This situation may occur
quite legitimately; it is often the
case that not all necessary infor
mation for a given task is gathered
at one time. Of course, not all in
formation relating to a task can be
deferred. For example, some unique
designation of th e employee is es
sential, even if this designation
happens to be an arbitrary, unique
employee ident ificat ion number.
In the case of the spousal name, a
need exists to recognize th e exis
tence of a spouse without neces
sarily knowing the spouse's name.

"Value unknown" is another
way data entry operators handle a
conditional property, while at the
same time conveying the belief
that a value will be known at some
time in the future. Unfortunately,
the "value unknown" kind of null
does not quite succeed; it captures
the existence of a relationship, but
does not capture the fact that a
unique designation for the spouse
exists. In particular, it cannot treat
two occurrences of the "value un
known" designation as the same
and all others as different. For ex
ample, if the form also had a place
for children of the spouse (as, for
example, those from a different
marriage), it would be very diffi
cult to capture this information in
a database without resorting to re
peating groups. Few people would
make this mistake on paper: some
means would be invented to estab
lish which "value unknown spouse
name" had which children!

Value does not exist. Suppose
that emp loyees normally have so
cial security numbers, but one par
ticular employee does not. Al
though it might be reasonable to
expect that the employee would
eventually get a social security
number, some foreign employees
might never be able to obtain them.
Thus, the data entry operator
might know that the value belong
ing in the social security number
field n ot only was not known, but
it would never even be assigned.
"Value does not exist" is another
way of handling a conditional
property, while conveying the be
lief that the value can never be
known.

Value undefined. Some fields
are defined in such a way that the
appropriate value is "undefined"
in certain circumstances. In par
ticular, consider a field defined as
the quotient of two numbers, such
as the percentage of departmental
sales revenues contributed by a
particular salesperson. If the de
partmental sales revenues are zero
(at the beginning of the sales peri
od, for example), this number is
undefined. This case might be due
to bad design: The value is not en
tirely functionally dependent on
either the salesperson or the de
partment. Instead, it is a value de
rived from two other values, one
of which is functionally depen
dent on salesperson and the other
on department. ''Value undefined"
is one data entry version of a con
ditional constraint.

Value not valid. Say the value
that a data entry operator enters
violates a constraint, such as a do
main constraint. We might want to
record that such errors in the in
forma tion gathering process have
occurred. "Value not valid" is an
other data entry version of a con
ditional constraint.

Value rejected. Th e system
may reject a value that the data en
try operator knows is correct, and
imply that a change is required to
the domain definition or some
other constraint. In other words, it
is possible that the system will in
form the data entry person that it
cannot accept a value that is known
to be correct, implying that the
data entry person has detected a
system design error. "Value reject
ed" is another data entry version
of a conditional constraint, but
with the added attempt to convey
a belief that the constraint being
violated is incorrect.

Value not supplied. Sometimes
a value is not su pplied during data
entry-which often occurs when
the data collection process is com
bined with the data entry process.
It can also occur when the entered
data is collected from uncoopera
t ive users oi; unreliable sources.
For example, the U.S. Census sur
vey contains certain optional ques
tions that some residents of the
U.S. do not wish to answer. It is
also possible that the data entry
operator chooses not to enter a
particular field. Two cases must be

I I I I I I I I I I I I I I I I I
Motivations for
allowing nulls in
a database are

sometimes valid
treated when data is not supplied;
either the missing information is
the value of a property (and so a
way of handling conditional prop
erties or conditional relationships),
or it is the value of an identifier
for the entity. In the latter case, we
have the problem of capturing in
formation about an improperly
identified entity, possibly violat
ing pr imary key discipline. Next
month, in Part IV, we will see that
this situation represents a database
design error, and will reduce the
problem of handling conditional
properties.

The importance of under
standing different flavors of null
should not be underestimated. Not
only do they appear in new data
bases through data entry, but we
often find each of them as types of
missing information in legacy data
bases. The process of migrating to
a relational database requires iden
tifying and handling each possible
case.

DEFAULTS: AN ALTERNATIVE?
[t is unfortunate that most com
mercial RDBMSs make it far easier
to specify the SQL NULL as a default
than to specify a meaningful de
fault value for a column. As a re
sult, SQL M.Jlls are sometimes used
as an improper substitute for de
fa ults. Indeed, the relationship be
tween defaults and nulls is so in
tertwined that Date has suggested
a systematic use of defaults as an
alternative for all types of null/ a
position with which I have some
sympathy.

FEBRUARY 1994
48

Certainly a systematic use of
defaults would result in a far bet
ter DBMS than the many-valued
logic alternative I criticized in Part
II. However, I do not believe sys
tematic defaults can or should be
used in place of every possible oc
currence of nulls. An alternative
and more restricted systematic use
of defaults will be among the pro
posed solutions to nulls in Part IV.

SUMMARY
Ralph Waldo Emerson once said
Uournals, 1866) "If I cannot brag of
knowing something, then I brag
of not knowing it." By accident
and by design, database practition
ers often find themselves in this
unfortunate position .. The existence
of a null in a database is ultimately
a statement about what we do not
know, about something that is not
part of the defined (and hopefully
agreed upon) universe of discourse
for a particular database.

A database designer's moti
vations for incorporating or allow
ing nulls in a database are some
times valid, representing a valiant
attempt to deal with conditional
relationships, properties, opera
tions, constraints, and information.
This conclusion, along with the
conclusion of Part II that many
valued logic and, therefore, nulls
are not an appropriate solution to
the "missing information problem,"
leaves us in a dilemma. As a con
clusion to this series, next month
in Part IV I will propose a set of
solutions to this dilemma. Ill

The author would like to thank Chris Date ai1d
Hugh Darwen for tlreir helpful comments and
criticisms. Also, apologies to Billy Preston
(agnin) and Tire Allman Brotlrers for tire abuse
of tlreir song titles.

REFERENCES
1. Olson, R. G. Meaning and Argument:

Elements of Logic, Harcourt, Brace, &: World,
1969.

2. Date, C. J. "NOT is Not NOT!" in Re
lational Database Writings 1985-1989, Ad
dison-Wesley, 1990.

3. Date, C. J. with Hugh Darwen. "The
Default Values Approach to Missing Infor
mation" in Relational Database Writings
1989-1991, Addison-Wesley, 1992.

David McGoveran is president of Alterna
tive Technologies (Boulder Creek, Cal i·
fornia) , a relational database consulting
fi rm founded in 1976. He has authored
numerous technical articles and is also
the publisher of the " Database Product
Evaluation Report Series."

I
I .

